Organization of tropical convection and relationship with extreme precipitation events
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1. Introduction 4. Impact of cloud-radiation interaction: Goddard MMF Experiments
The re-distribution of heat and water by precipitation and clouds associated with the organization of tropical Objective: To examine the impacts of cloud-radiation interaction on MOTC and EPEs and teleconnection patterns,
conve_cuo_n is argua_bly the mo_st fl.mdamenlal atmospheric processes affecting weat_hgr a_nd climate. The and to better understand the dynamics of MOTC and potential predictability of EPEs.
organization of tropical convection influences not only the occurrence of extreme precipitation events (EPE) X
in the tropics, but also EPE’s outside the tropics, through atmospheric teleconnection. In spite of advances ) ) Hyvdrometeor Profile
in understanding gained from a large body of past research, the organization of tropical convection, in The Goddard Multiscale Modeling Framework (GMMF) v
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supported by the Precipitation Measuring Mission that includes the TRMM and GPM satellite mission, offer P Er
a great opportunity for the scientific community to tackle this challenging problem. The objectives of the « The moist parameterizations in GEOS GCM were ’:"ai :
proposed research are to improve understanding of a) the organization of tropical convection, in terms of replaced by a embedded 2D GCE at each GCM grid g trae e O TR R e e Er e e .
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the tropics, and b) .the COl'.llrlblf[-IOnS of orgam.zed convections lth?gh atmospheric teleconnection to . The GEOS GCM has 2.0° X 2.5° grid spacing with “ N i
occurrence and potential predictability of extratropical EPEs over the Pacific Northwest of the US. 48 vertical layers stretching from the surface to 0.4 ¥ ¥z L IEm
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2. Characteristics of MOTC + The 2D GCE has 32 x 44 (x-2) grid points with 4 km R e T B B T B Figure 4 (left). ]?ifferencte.s in frequency .dislﬁibutiolnl of RH,
Objective : To better understand key processes and their interactions leading to the horizontal resolution and time step of 10 second. \M p o o temperature, vertical velocity (upward motion is positive), and
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Figure 1. Exploring structural changes of Figure 2. The cloud regime centroids as derived from k- . . L. . 15 \ -3
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convective types. (Shown as a function of and N.-Y Cho). Bottom plots show the seasonal variation 5 igure 6. DIF mean OLR from (a) Control, (b) MERRA2, (c) Figure 7. DIF mean precipitation from (a) Control, (b) TRMM,
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£a Bt .. ¥ 2 distribution of diurnal peaks Figure 11. Time-longitude section of zonal winds at850hPa and 200hPa, and precipitation from Control
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0 . / Summary
—s0 B Impacts of cloud-radiation interactions on precipitation are examined by conducting two sets of five-month simulations using the \
Goddard MMF (GMMEF), with (Control) and without (NoCRF) cloud-radiation feedback. Cloud effects are discussed based on the
» difference between Control and NoCRF experiments. Preliminary results show that:
P B Cloud-radiation interaction warms mid- to upper-tropospheric temperature, and causes overall increase of atmospheric stability. As a
*ﬂ results, more shallower convections are found in the Control, and more intense but fewer deep convections in NoCRF.
i B Cloud-radiation interaction improves the simulation of seasonal mean precipitation distribution, suppressing a “double-ITCZ-like”
H model structure over Indian Ocean and equatorial western Pacific Ocean.
— i 2 B Associated with overall increase of atmospheric stability due to cloud-radiation feedback, the amplitude of diurnal cycle of
20 4060 80100120,130.150 180200 220 240,200 — precipitation is slightly weakened over land, and the diurnal peaks appear more broader in Control than in NoCRF.
: 3 ;‘hdﬁcdi‘;lzm 'gai:f R(gz“j"%mm oy Figure 9. Diurnal phases of precipitation from B The eastward propagation of the MJO-like winds and rainfall anomalies seem more organized with cloud-radiation interaction.
2055 —_— 2 X e e contour: h500 (a) Control and (b) NoCRF run. / Extended integrations for longer periods will be conducted to further explore the details of the cloud-radiation-dynamics feedback
Figure 4. Frequency of occurrence of heavy rainfall events (>50mm/day) as a function of MJO phases. \processe& j




